دانلود رایگان


Data Mining techniques for the detection of fraudulent financial statements - دانلود رایگان



دانلود رایگان

دانلود رایگان Data Mining techniques for the detection of fraudulent financial statements

تکنیک های داده کاوی برای کشف تقلب در صورت های مالی

Data Mining techniques for the detection of fraudulent
financial statements

لینک دانلود مقاله:

http://s8.picofile.com/file/8315120284/22094.pdf.html





چکیده
این مقاله کارایی تکنیک های طبقه بندی با استفاده از داده کاوی (DM)در شناسایی شرکت هایی را که صورت های مالی خلاف واقع (FFS) منتشر می کنند، بررسی کرده و به شناسایی عوامل مرتبط با FFS نیز می پردازد. حسابرسان می توانند با بهره بردن از تکنیک های داده کاوی برای کشف تقلب های مدیریتی، کار خود را ساده تر کنند. این مطالعه تأثیر استفاده از درخت های تصمیم گیری، شبکه های عصبی و شبکه های بیزین در شناسایی صورت های مالی تقلبی را بررسی می نماید. بردار درون داد از نسبت های برگرفته از صورت های مالی تشکیل شده است. سه مدل مذکئور از لحاظ عملکرد مورد مقایسه قرار می گیرند.

کلمات کلیدی: صورت های مالی تقلبی، تقلب مدیریتی، داده کاوی، حسابرسی، یونان

1. مقدمه
امروزه حسابرسی (ممیزی) به کاری بسیار چالش بر انگیز بدل شده و شواهد زیادی موجودست مبنی براین که انجام فعالیت های مربوط به «دستکاری در حساب ها» به شدت رواج دارد. کاسکیوارا سال 2002 را از نظر دستکاری در حساب ها، «سالی هولناک» نامیده و ادعا می کند که این دستکاری ها هنوز هم ادامه دارد (کاسکیوارا، 2004). برخی از برآوردها حاکی از آنند که تقلب و کلاهبرداری سالانه بیش از 400 میلیارد دلار برای ایالات متحده هزینه دربردارد (ولز، 1997). اسپاتیس، دامپوس و زاپونیدیس (2002) مدعی این هستند که تقلب در صورت های مالی ظرف چند سال اخیر به شدت رواج گرفته است. تقلب مدیریتی به معنای کلاهبرداری عامدانه از سوی مدیریت است به نحوی که ارائه صورت های مالی ساختگی گمراه کننده باعث خسارت دیدن سرمایه گذاران و بستانکاران شود. حسابرسان می بایست حتما در طول فرایند ممیزی، احتمال وقوع تقلب مدیریتی را برآورد کنند. سازمان AICPA صراحتا به مسئولیت حسابرسان در کشف تقلب اذعان دارد (کالینان و ساتن، 2002). حسابرسان برای گسترش پیش بینی ه


Data


Mining


techniques


for


the


detection


of


fraudulent


financial


statements


مقاله


پاورپوینت


فایل فلش


کارآموزی


گزارش تخصصی


اقدام پژوهی


درس پژوهی


جزوه


خلاصه


Detecting Fraudulent Financial Statements for the ...

Previous studies have reported the superior classification performance of data mining techniques over traditional statistical methods [1–7,9–20]. The literature related to FFS detection driven by data mining techniques is presented in Table1. Table 1. Research on data mining techniques in detecting fraudulent financial statements (FFS). Sl.

A Review of Financial Accounting Fraud Detection based on ...

describes classification of data mining techniques and applications for financial accounting fraud detection. Section 3 provides distribution of the research literature as per the applications and techniques of data mining for the detection of financial accounting fraud. Section 4 describes our framework in more detail.

Data Mining techniques for the detection of fraudulent ...

This paper explores the effectiveness of Data Mining (DM) classification techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS. In accomplishing the task of management fraud detec-tion, auditors could be facilitated in their work by using Data Mining techniques. This study investigates the usefulness of Decision

Data Mining techniques for the detection of fraudulent ...

This paper explores the effectiveness of Data Mining (DM) classification techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS. In accomplishing the task of management fraud detec-tion, auditors could be facilitated in their work by using Data Mining techniques. This study investigates the usefulness of Decision

Data mining techniques for the detection of …

(PDF) Data mining techniques for the detection of fraudulent financial statements | Yannis Manolopoulos - Academia.edu This paper explores the effectiveness of Data Mining (DM) classification techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS.

Data mining techniques for the detection of …

Data mining techniques for the detection of fraudulent financial statements

Data Mining techniques for the detection of fraudulent ...

Data Mining techniques for the detection of fraudulent financial statements Efstathios Kirkos a,1, Charalambos Spathis b,*, Yannis Manolopoulos c,2 a Department of Accounting, Technological Educational Institution of Thessaloniki, P.O. Box 141, 57400 Thessaloniki, Greece b Department of Economics, Division of Business Administration, Aristotle University of Thessaloniki, 54124 …

Data Mining techniques for the detection of fraudulent ...

Data Mining techniques for the detection of fraudulent financial statements Efstathios Kirkos a,1, Charalambos Spathis b,*, Yannis Manolopoulos c,2 a Department of Accounting, Technological Educational Institution of Thessaloniki, P.O. Box 141, 57400 Thessaloniki, Greece b Department of Economics, Division of Business Administration, Aristotle University of Thessaloniki, 54124 …

Data Mining techniques for the detection of fraudulent ...

This paper explores the effectiveness of Data Mining (DM) classification techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS. In accomplishing the task of management fraud detec-tion, auditors could be facilitated in their work by using Data Mining techniques. This study investigates the usefulness of Decision

The Efficacy of Predictive Methods in Financial

The existence and persistence of financial statement fraud (FSF) are detrimental to the financial health of global capital markets. A number of detective and predictive methods have been used to prevent, detect, and correct FSF, but their practicability has always been a big challenge for researchers and auditors, as they do not address real-world problems.

Data Mining Tools To Detect Financial Fraud

used techniques for prevention and detection of financial frauds. The implementation of data mining techniques for fraud detection follows the traditional information flow of data mining, which begins with feature selection followed by representation, data collection and management, pre - processing, data mining, post-processing, and performance

Data mining techniques for the detection of …

This paper explores the effectiveness of Data Mining (DM) classification techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors...

Detecting Fraudulent Financial Statements for the ...

Previous studies have reported the superior classification performance of data mining techniques over traditional statistical methods [1–7,9–20]. The literature related to FFS detection driven by data mining techniques is presented in Table1. Table 1. Research on data mining techniques in detecting fraudulent financial statements (FFS). Sl.

Data mining techniques for the detection of …

(PDF) Data mining techniques for the detection of fraudulent financial statements | Yannis Manolopoulos - Academia.edu This paper explores the effectiveness of Data Mining (DM) classification techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS.

Researches of Detection of Fraudulent Financial Statements ...

explored. Our study investigates the usefulness of Data Mining techniques including Decision Trees, Neural Networks and Bayesian Belief Networks in the identification of fraudulent financial statements. At last, we compare the three models in terms of their performances. Keywords:Data mining, Fraudulent financial statements, Decision tree. 1.

Data mining techniques for the detection of …

Data mining techniques for the detection of fraudulent financial statements

Researches of Detection of Fraudulent Financial

Financial accounting fraud detection (FAFD) has become an emerging topic of great importance for academic, research and industries. In this paper, the effectiveness of Data Mining (DM) classification techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS are explored.

Compre na Amazon - Confira milhões de produtos

AnúncioFrete Grátis com Prime. Conheça nossas ofertas em diversas categorias.

Detection of fraudulent financial statements

The research objects are companies which experienced both fraudulent and non-fraudulent... The purpose of this study is to construct a valid and rigorous fraudulent financial statement detection model. ... Detection of fraudulent financial statements using the hybrid data mining approach.

Detection of fraudulent financial statements using the ...

using data mining techniques to detect fraudulent financial statements vary, and the construction of the model is neither complete nor perfect. As stated above, most studies only use 1–2 data mining techniques, without offering model comparison; and most use one-stage statistical treatment to establish the detection model, which is not prudent.

Detection of fraudulent financial statements using the ...

using data mining techniques to detect fraudulent financial statements vary, and the construction of the model is neither complete nor perfect. As stated above, most studies only use 1–2 data mining techniques, without offering model comparison; and most use one-stage statistical treatment to establish the detection model, which is not prudent.

The Efficacy of Predictive Methods in Financial

The existence and persistence of financial statement fraud (FSF) are detrimental to the financial health of global capital markets. A number of detective and predictive methods have been used to prevent, detect, and correct FSF, but their practicability has always been a big challenge for researchers and auditors, as they do not address real-world problems.

Data Mining techniques for the detection of fraudulent ...

Data Mining techniques for the detection of fraudulent financial statements. This paper explores the effectiveness of Data Mining (DM) classification techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS.

The Efficacy of Predictive Methods in Financial

The existence and persistence of financial statement fraud (FSF) are detrimental to the financial health of global capital markets. A number of detective and predictive methods have been used to prevent, detect, and correct FSF, but their practicability has always been a big challenge for researchers and auditors, as they do not address real-world problems.

FRAUDULENT FINANCIAL REPORTING BASED OF …

Kirkos, E., et al. (2007). Data mining techniques for the detection of fraudulent financial statements. Expert systems with applications, 32(4), 995-1003. Kirkos, E., et al. (2014 ... Detection of financial statement fraud and feature selection using data mining techniques. Decision Support Systems, 50(2), 491-500. Rezaee, Z. (2002). Financial ...

تحقيق قوانين مرتبط با مقوله حمل و نقل شهري


بررسی تاثیر دمای قالب بر خواص مکانیکی قطعات متالورژی پودر تولید شده به روش فشردن گرم


تحقیق معماری در مناطق اقلیمی


تکنولوژی و کارگاه ساخت و نگهداری کوره های ذوب


نقشه ی رستری جهت شیب استان کهگیلویه و بویراحمد


تاریخ ایران باستان (مجموعه تاریخ)


پلان ساختمان 3 طبقه، هر واحد 155 متر


پاورپوینت عملیات حرارتی آلیاژ Cu-Al


نقشه بخش های شهرستان بوکان


گزارش کارآموزی توليدات صنايع پلاستيكي (قالب سازي)